ALCF COMPUTATIONAL PERFORMANCE WORKSHOP

VISUALIZATION INTRODUCTION

JOE INSLEY

Lead, Visualization & Data Analytics Argonne Leadership Computing Facility SILVIO RIZZI

Assistant Computer Scientist
Argonne Leadership Computing Facility

May 4th, 2017 Argonne National Laboratory

HERE'S THE PLAN...

- Examples of visualizations
- Visualization resources
- Visualization tools and formats
- Data representations
- Annotation and movie creation
- Visualization for debugging
- In-Situ Visualization and Analysis

CLIMATE

Data courtesy of: Mark Taylor, Sandia National Laboratory; Rob Jacob, Argonne National Laboratory; Warren Washington, National Center for Atmospheric Research

MATERIALS SCIENCE / MOLECULAR

Data courtesy of: Jeff Greeley, Nichols Romero, Argonne National Laboratory

Data courtesy of: Subramanian Sankaranarayanan, Argonne National Laboratory

Data courtesy of: Advanced Photon Source, Argonne National Laboratory

COOLEY

- Analytics/Visualization cluster
- Peak 223 TF
- 126 nodes; each node has
 - Two Intel Xeon E5-2620 Haswell 2.4 GHz 6-core processors
 - NVIDIA Telsa K80 graphics processing unit (24GB)
 - 384 GB of RAM
- Aggregate RAM of 47 TB (vs. ~6TB for Tukey)
- Aggregate GPU memory of~3TB (vs. ~1.1TB for Tukey)
- Cray CS System
- 216 port FDR IB switch with uplinks to our QDR infrastructure
- Mounts the same GPFS file systems as Mira, Cetus

VISUALIZATION TOOLS AND DATA FORMATS

ALL SORTS OF TOOLS

- Visualization Applications
 - VisIt
 - ParaView
 - EnSight
- Domain Specific
 - VMD, PyMol, RasMol
- APIs
 - VTK: visualization
 - ITK: segmentation & registration
- GPU performance
 - vl3: shader-based volume rendering

- Analysis Environments
 - Matlab
 - Parallel R
- Utilities
 - GnuPlot
 - ImageMagick
- Visualization Workflow
 - VisTrails

PARAVIEW & VISIT VS. VTK

- ParaView & VisIt
 - General purpose visualization applications
 - GUI-based
 - Scriptable
 - Extendable
 - Built on top of vtk (largely)

- Programming environment / API
- Additional capabilities, finer control
- Smaller memory footprint
- Requires more expertise (build custom applications)

DATA FILE FORMATS (PARAVIEW & VISIT)

- VTK
- Parallel (partitioned) VTK
- VTK MultiBlock (MultiGroup, Hierarchical, Hierarchical Box)
- Legacy VTK
- Parallel (partitioned) legacy VTK
- EnSight files
- EnSight Master ServerStereo Lithography
- Exodus
- BYU
- XDMF

- PLOT2D
- PLOT3D
- SpyPlot CTH
- HDF5 raw image data
- DEM
- VRML
- PLY
- Polygonal Protein Data paraDIS Bank
- XMol Molecule
- Gaussian Cube
- Raw (binary)
- AVS

- Meta Image
- Facet
- PNG
- SAF
- LS-Dyna
- Nek5000
- OVERFLOW
- PATRAN
- PFLOTRAN
- Pixie
- PuReMD
- S3D

- SAS
- Tetrad
- UNIC
- VASP
- ZeusMP
- ANALYZE
- BOV
- GMV
- Tecplot
- Vis5D
- Xmdv
- XSF

DATA WRANGLING

- XDMF
 - XML wrapper around HDF5 data
 - Can define
 - data sets
 - subsets
 - hyperslabs
- vtk
 - Could add to your simulation code
 - Can write small utilities to convert data
 - Use your own read routines
 - Write vtk data structures
 - C++ and Python bindings

DATA ORGANIZATION

- Format
 - Existing tools support many flavors
 - Use one of these formats
 - Use (or write) a format converter
 - Write a custom reader for existing tool
 - Write your own custom vis tool
- Serial vs. Parallel/Partitioned
 - Single big file vs. many small files: middle ground generally best
 - vtk data types
 - XDMF for HDF5 (VisIt and ParaView)
 - Custom

DATA ORGANIZATION

- Serial vs. Parallel/Partitioned
 - Performance trade-offs
 - vtk/paraview: serial files all data read on head node, partitioned and distributed
 - vtk/paraview: parallel files: serial files partitioned

Performance example:

- Single serial .vtu file (unstructured grid)
 - Data size: ~3.8GB
 - Read time on 64 processes: > 15 minutes
 - most of this was spent partitioning and distributing
- Partitioned .pvtu file (unstructured grid)
 - Data size: ~8.7GB (64 partitions)
 - Read time on 64 processes: < 1 second

DATA REPRESENTATIONS

DATA REPRESENTATIONS: VOLUME RENDERING

DATA REPRESENTATIONS: GLYPHS

- 2D or 3D geometric object to represent point data
- Location dictated by coordinate
 - 3D location on mesh
 - 2D position in table/graph
- Attributes graphical entity dictated by attributes of a data
 - color, size, orientation

DATA REPRESENTATIONS: CONTOURS (ISOSURFACES)

- A Line (2D) or Surface (3D), representing a constant value
- Vislt & ParaView:
 - good at this
- vtk:
 - same, but again requires more effort

DATA REPRESENTATIONS: CUTTING PLANES

- Slice a plane through the data
 - Can apply additional visualization methods to resulting plane
- VisIt & ParaView & vtk good at this
- VMD has similar capabilities for some data formats

DATA REPRESENTATIONS: STREAMLINES

- From vector field on a mesh (needs connectivity)
 - Show the direction an element will travel in at any point in time.

VisIt & ParaView & vtk good at this

MOLECULAR DYNAMICS VISUALIZATION

VMD:

- Lots of domain-specific representations
- Many different file formats
- Animation
- Scriptable
- Not parallel
- Vislt & ParaView:
 - Limited support for these types of representations
- VTK:
 - Anything's possible if you try hard enough

ANNOTATION AND MOVIE CREATION

ANNOTATION, COMPOSITING, SCALING...

- ImageMagick
 - convert, composite, montage, etc.

ANNOTATION, COMPOSITING, SCALING...

- ImageMagick
 - scale, fade

MOVIE CREATION

- VisIt and ParaView can spit out a movie file (.avi, etc.)
 - can also spit out individual images
- Combine multiple segments of frames
 - Create a directory of symbolic links to all frames in order
- ffmpeg: Movie encoding
 - ffmpeg –sameq –i frame.%04d.png movie.mp4

VISUALIZATION FOR DEBUGGING

VISUALIZATION FOR DEBUGGING

VISUALIZATION FOR DEBUGGING

VISUALIZATION AS DIAGNOSTICS: COLOR BY THREAD ID

IN-SITU VISUALIZATION AND ANALYSIS

MULTIPLE IN-SITU INFRASTRUCTURES

CAN WE....

- Enable use of any in situ framework?
- Develop analysis routines that are portable between codes?
- Make it easy to use?

OUR APPROACH

- Data model to pass data between Simulation & Analysis
- API for instrumenting simulation and analysis codes

DATA MODEL: VTK

- Used by ParaView/Catalyst and VisIt/Libsim
- Supports common scientific dataset types
- On going independent efforts to evolve for exascale

 Supports using simulation memory directly (zero-copy) for multiple memory layouts

SENSEI: API: COMPONENTS

INSTRUMENTATION TASKS

FOR SIMULATION

- Write a Data Adaptor to map simulation data to VTK data model
- Write a Bridge to define API entry points for simulation

FOR ANALYSIS

- Write analysis adaptor that uses
 Data Adaptor API to access Data
- Transform data, if needed and invoke analysis

ADDING A CATALYST PYTHON SCRIPT ANALYSIS

- 13 lines of CMake code changes
- 18 lines of C++ code
- In situ work can be specified via SENSEI XML

EXAMPLE WITH CATALYST PYTHON SCRIPT

Cartiso
https://github.com/
PETTT/minilO

data adaptor

bridge

analysis adaptor

- 10.00727323, 0.2548474225, 0.5624216349999999, 0.7496958675, 0.90757 Catalyst **Python Script Analysis**

<sensei>
 <analysis type="catalyst" pipeline="pythonscript" filename="slice_contourcut.py" />
</sensei>

import connection except:

print could not find by address from appointment of the could not find by address from appointment of the country of the country

CATALYST LIVE THROUGH PYTHON SCRIPT

SENSEI insitu

http://www.sensei-insitu.org/

Sensei: A Lightweight In Situ Interface for Contemporary Infrastructure Tools and Architectures

Andrew Bauer, Patrick O'Leary and Utkarsh Ayachit

QUESTIONS?

Silvio Rizzi srizzi@anl.gov Joe Insley insley@anl.gov

